Laminin directs growth cone navigation via two temporally and functionally distinct calcium signals.
نویسندگان
چکیده
During development, growth cones navigate to their targets via numerous interactions with molecular guidance cues, yet the mechanisms of how growth cones translate guidance information into navigational decisions are poorly understood. We have examined the role of intracellular Ca2+ in laminin (LN)-mediated growth cone navigation in vitro, using chick dorsal root ganglion neurons. Subsequent to contacting LN-coated beads with filopodia, growth cones displayed a series of stereotypic changes in behavior, including turning toward LN-coated beads and a phase of increased rates of outgrowth after a pause at LN-coated beads. A pharmacological approach indicated that LN-mediated growth cone turning required an influx of extracellular Ca2+, likely in filopodia with LN contact, and activation of calmodulin (CaM). Surprisingly, fluorescent Ca2+ imaging revealed no LN-induced rise in intracellular Ca2+ in filopodia attached to their parent growth cone. However, isolation of filopodia by laser-assisted transection unmasked a rapid, LN-specific rise in intracellular Ca2+ (+73 +/- 11 nM). Additionally, a second, sustained rise in intracellular Ca2+ (+62 +/- 8 nM) occurred in growth cones, with a distinct delay 28 +/- 3 min after growth cone filopodia contacted LN-coated beads. This delayed, sustained Ca2+ signal paralleled the phase of increased rates of outgrowth, and both events were sensitive to the inhibition of Ca2+/CaM-dependent protein kinase II (CaM-kinase II) with 2 microM KN-62. We propose that LN-mediated growth cone guidance can be attributed, in part, to two temporally and functionally distinct Ca2+ signals linked by a signaling cascade composed of CaM and CaM-kinase II.
منابع مشابه
Laminin and fibronectin guideposts signal sustained but opposite effects to passing growth cones
Guidepost cells are known to alter the behavior of growth cones in vivo, yet the nature of communication and the type of signals employed are largely undefined. The present study demonstrates that model guideposts, composed of a single molecular species, are sufficient to change the navigation and the behavior of advancing growth cones well beyond the time of contact. Laminin on model guidepost...
متن کاملStimulus history alters behavioral responses of neuronal growth cones.
Generally, it is assumed that growth cones respond to a specific guidance cue with a single, specific, and stereotyped behavior. However, there is evidence to suggest that previous exposure to a given cue might alter subsequent responses to that cue (Snow and Letourneau, 1992; Shirasaki et al., 1998). We therefore tested the hypothesis that growth cone responses to stimuli are dependent on the ...
متن کاملCell adhesion molecules regulate Ca2+-mediated steering of growth cones via cyclic AMP and ryanodine receptor type 3
Axonal growth cones migrate along the correct paths during development, not only directed by guidance cues but also contacted by local environment via cell adhesion molecules (CAMs). Asymmetric Ca2+ elevations in the growth cone cytosol induce both attractive and repulsive turning in response to the guidance cues (Zheng, J.Q. 2000. Nature. 403:89-93; Henley, J.R., K.H. Huang, D. Wang, and M.M. ...
متن کاملBDNF/trkB Induction of Calcium Transients through Cav2.2 Calcium Channels in Motoneurons Corresponds to F-actin Assembly and Growth Cone Formation on β2-Chain Laminin (221)
Spontaneous Ca2+ transients and actin dynamics in primary motoneurons correspond to cellular differentiation such as axon elongation and growth cone formation. Brain-derived neurotrophic factor (BDNF) and its receptor trkB support both motoneuron survival and synaptic differentiation. However, in motoneurons effects of BDNF/trkB signaling on spontaneous Ca2+ influx and actin dynamics at axonal ...
متن کاملRole of the cytoskeleton in growth cone motility and axonal elongation
During axonal pathfinding, the direction of nerve fiber extension is established by the growth cone, the motile structure at the distal tip of an elongating axon. It is the growth cone that navigates and directs axonal outgrowth by detecting and responding to complex molecular cues in the nervous system environment. Changes in growth cone behavior and morphology that result from contact with th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 1 شماره
صفحات -
تاریخ انتشار 1998